
Package: rje (via r-universe)
August 27, 2024

Type Package

Title Miscellaneous Useful Functions for Statistics

Version 1.13.0

Description A series of functions in some way considered useful to the
author. These include methods for subsetting tables and
generating indices for arrays, conditioning and intervening in
probability distributions, generating combinations, fast
transformations, and more...

Depends R (>= 2.0.0),

License GPL (>= 2)

LazyLoad yes

Suggests knitr, rmarkdown, testthat

VignetteBuilder knitr

RoxygenNote 7.3.1

Encoding UTF-8

URL https://github.com/rje42/rje

BugReports https://github.com/rje42/rje/issues

Repository https://rje42.r-universe.dev

RemoteUrl https://github.com/rje42/rje

RemoteRef HEAD

RemoteSha 2cabea75d1f961db2f6e799d21af61e29a2d450b

Contents
and0 . 2
armijo . 3
combinations . 5
conditionMatrix . 6
cubeHelix . 8
designMatrix . 10

1

https://github.com/rje42/rje
https://github.com/rje42/rje/issues

2 and0

Dirichlet . 11
expit . 12
fastHadamard . 13
fastMobius . 14
fsapply . 15
greaterThan . 16
inclusionMax . 17
indexBox . 18
int2set . 19
interventionMatrix . 20
is.subset . 21
is.wholenumber . 22
kronPower . 23
last . 23
marginTable . 24
match_rows . 25
patternRepeat . 26
powerSet . 27
printPercentage . 28
quickSort . 29
rowMins . 31
rprobdist . 31
schur . 32
setmatch . 33
sets_nested . 34
subsetMatrix . 35
subsetOrder . 36
subtable . 37

Index 39

and0 Fast pairwise logical operators

Description

Fast but loose implementations of AND and OR logical operators.

Usage

and0(x, y)

Arguments

x, y logical or numerical vectors

Details

Returns pairwise application of logical operators AND and OR. Vectors are recycled as usual.

armijo 3

Value

A logical vector of length max(length(x), length(y)) with entries x[1] & x[2] etc.; each entry
of x or y is TRUE if it is non-zero.

Note

These functions should only be used with well understood vectors, and may not deal with unusual
cases correctly.

Examples

and0(c(0,1,0), c(1,1,0))
Not run:
set.seed(1234)
x = rbinom(5000, 1, 0.5)
y = rbinom(5000, 1, 0.5)

3 to 4 times improvement over `&`
system.time(for (i in 1:5000) and0(x,y))
system.time(for (i in 1:5000) x & y)

End(Not run)

armijo Generic functions to aid finding local minima given search direction

Description

Allows use of an Armijo rule or coarse line search as part of minimisation (or maximisation) of a
differentiable function of multiple arguments (via gradient descent or similar). Repeated application
of one of these rules should (hopefully) lead to a local minimum.

Usage

armijo(
fun,
x,
dx,
beta = 3,
sigma = 0.5,
grad,
maximise = FALSE,
searchup = TRUE,
adj.start = 1,
...

)

coarseLine(fun, x, dx, beta = 3, maximise = FALSE, ...)

4 armijo

Arguments

fun a function whose first argument is a numeric vector

x a starting value to be passed to fun

dx numeric vector containing feasible direction for search; defaults to -grad for
ordinary gradient descent

beta numeric value (greater than 1) giving factor by which to adjust step size

sigma numeric value (less than 1) giving steepness criterion for move

grad numeric gradient of f at x (will be estimated if not provided)

maximise logical: if set to TRUE search is for a maximum rather than a minimum.

searchup logical: if set to TRUE method will try to find largest move satisfying Armijo
criterion, rather than just accepting the first it sees

adj.start an initial adjustment factor for the step size.

... other arguments to be passed to fun

Details

coarseLine performs a stepwise search and tries to find the integer k minimising f(xk) where

xk = x+ βkdx.

Note k may be negative. This is genearlly quicker and dirtier than the Armijo rule.

armijo implements an Armijo rule for moving, which is to say that

f(xk)− f(x) < −σβkdx · ∇xf.

This has better convergence guarantees than a simple line search, but may be slower in practice.
See Bertsekas (1999) for theory underlying the Armijo rule.

Each of these rules should be applied repeatedly to achieve convergence (see example below).

Value

A list comprising

best the value of the function at the final point of evaluation

adj the constant in the step, i.e. βn

move the final move; i.e. βndx

code an integer indicating the result of the function; 0 = returned OK, 1 = very small
move suggested, may be at minimum already, 2 = failed to find minimum: func-
tion evaluated to NA or was always larger than f(x) (direction might be infea-
sible), 3 = failed to find minimum: stepsize became too small or large without
satisfying rule.

Functions

• coarseLine(): Coarse line search

combinations 5

Author(s)

Robin Evans

References

Bertsekas, D.P. Nonlinear programming, 2nd Edition. Athena, 1999.

Examples

minimisation of simple function of three variables
x = c(0,-1,4)
f = function(x) ((x[1]-3)^2 + sin(x[2])^2 + exp(x[3]) - x[3])

tol = .Machine$double.eps
mv = 1

while (mv > tol) {
or replace with coarseLine()
out = armijo(f, x, sigma=0.1)
x = out$x
mv = sum(out$move^2)

}

correct solution is c(3,0,0) (or c(3,k*pi,0) for any integer k)
x

combinations Combinations of Integers

Description

Returns a matrix containing each possible combination of one entry from vectors of the lengths
provided.

Usage

combinations(p)
powerSetMat(n)

Arguments

p vector of non-negative integers.

n non-negative integer.

6 conditionMatrix

Details

Returns a matrix, each row being one possible combination of integers from the vectors (0, 1, . . . , pi−
1), for i between 1 and length(p).

Based on bincombinations from package e1071, which provides the binary case.

powerSetMat is just a wrapper for combinations(rep(2, n)).

Value

A matrix with number of columns equal to the length of p, and number of rows equal to p1×· · ·×pk,
each row corresponding to a different combination. Ordering is reverse-lexographic.

Author(s)

Robin Evans

Examples

combinations(c(2,3,3))

powerSetMat(3)

conditionMatrix Find conditional probability table

Description

Given a numeric array or matrix (of probabilities), calculates margins of some dimensions condi-
tional on particular values of others.

Usage

conditionMatrix(
x,
variables,
condition = NULL,
condition.value = NULL,
dim = NULL,
incols = FALSE,
undef = NaN

)

conditionTable(
x,
variables,
condition = NULL,
condition.value = NULL,

conditionMatrix 7

undef = NaN,
order = TRUE

)

conditionTable2(x, variables, condition, undef = NaN)

Arguments

x A numeric array.

variables An integer vector containing the margins of interest from x.

condition An integer vector containing the dimensions of x to condition on.
condition.value

An integer vector or list of the same length as condition, containing the values
to condition with. If NULL, then the full conditional distribution is returned.

dim Integer vector containing dimensions of variables. Assumed all binary if not
specified.

incols Logical specifying whether not the distributions are stored as the columns in the
matrix; assumed to be rows by default.

undef if conditional probability is undefined, what should the value be given as

order logical - if TRUE conditioned variables come last, if FALSE variables are in orig-
inal order.

Details

conditionTable calculates the marginal distribution over the dimensions in variables for each
specified value of the dimensions in condition. Single or multiple values of each dimension in
condition may be specified in condition.value; in the case of multiple values, condition.value
must be a list.

The sum over the dimensions in variables is normalized to 1 for each value of condition.

conditionTable2 is just a wrapper which returns the conditional distribution as an array of the
same dimensions and ordering as the original x. Values are repeated as necessary.

conditionMatrix takes a matrix whose rows (or columns if incols = TRUE) each represent a sepa-
rate multivariate probability distribution and finds the relevant conditional distribution in each case.
These are then returned in the same format. The order of the variables under conditionMatrix is
always as in the original distribution, unlike for conditionTable above.

The probabilities are assumed in reverse lexicographic order, as in a flattened R array: i.e. the first
value changes fastest: (1,1,1), (2,1,1), (1,2,1), ..., (2,2,2).

condition.table and condition.table2 are identical to conditionTable and conditionTable2.

Value

conditionTable returns an array whose first length(variables) corresponds to the dimensions
in variables, and the remainder (if any) to dimensions in condition with a corresponding entry
in condition.value of length > 1.

conditionTable2 always returns an array of the same dimensions as x, with the variables in the
same order.

8 cubeHelix

Functions

• conditionMatrix(): Conditioning in matrix of distributions

• conditionTable2(): Conditioning whilst preserving all dimensions

Author(s)

Mathias Drton, Robin Evans

See Also

marginTable, margin.table, interventionTable

Examples

x = array(1:16, rep(2,4))
x = x/sum(x) # probability distribution on 4 binary variables x1, x2, x3, x4.

distribution of x2, x3 given x1 = 1 and x4=2.
conditionTable(x, c(2,3), c(1,4), c(1,2))
x2, x3 given x1 = 1,2 and x4 = 2.
conditionTable(x, c(2,3), c(1,4), list(1:2,2))

complete conditional of x2, x3 given x1, x4
conditionTable(x, c(2,3), c(1,4))

conditionTable2 leaves dimensions unchanged
tmp = conditionTable2(x, c(2,3), c(1,4))
aperm(tmp, c(2,3,1,4))

####
set.seed(2314)
set of 10 2x2x2 probability distributions
x = rdirichlet(10, rep(1,8))

conditionMatrix(x, 3, 1)
conditionMatrix(x, 3, 1, 2)

cubeHelix Cube Helix colour palette

Description

Cube Helix is a colour scheme designed to be appropriate for screen display of intensity images.
The scheme is intended to be monotonically increasing in brightness when displayed in greyscale.
This might also provide improved visualisation for colour blindness sufferers.

cubeHelix 9

Usage

cubeHelix(n, start = 0.5, r = -1.5, hue = 1, gamma = 1)

Arguments

n integer giving the number of colours in the scale

start numeric: start gives the initial angle (in radians) of the helix

r numeric: number of rotations of the helix over the scale; can be negative

hue numeric controling the saturation of colour: 0 gives pure greyscale, defaults to
1

gamma numeric which can be used to emphasise lower or higher intensity values, de-
faults to 1

Details

The function evaluates a helix which moves through the RGB "cube", beginning at black (0,0,0)
and finishing at white (1,1,1). Evenly spaced points on this helix in the cube are returned as RGB
colours. This provides a colour palette in which intensity increases monotonically, which makes
for good transfer to greyscale displays or printouts. This also may have advantages for colour
blindeness sufferers. See references for further details.

Value

Vector of RGB colours (strings) of length ‘n‘.

Author(s)

Dave Green

Robin Evans

References

Green, D. A., 2011, A colour scheme for the display of astronomical intensity images. Bulletin of
the Astronomical Society of India, 39, 289. https://ui.adsabs.harvard.edu/abs/2011BASI.
..39..289G/abstract

See Dave Green’s page at https://www.mrao.cam.ac.uk/~dag/CUBEHELIX/ for other details.

See Also

rainbow (for other colour palettes).

Examples

cubeHelix(21)

Not run:
cols = cubeHelix(101)

https://ui.adsabs.harvard.edu/abs/2011BASI...39..289G/abstract
https://ui.adsabs.harvard.edu/abs/2011BASI...39..289G/abstract
https://www.mrao.cam.ac.uk/~dag/CUBEHELIX/

10 designMatrix

plot.new()
plot.window(xlim=c(0,1), ylim=c(0,1))
axis(side=1)
for (i in 1:101) {

rect((i-1)/101,0,(i+0.1)/101,1, col=cols[i], lwd=0)
}

End(Not run)

Not run:
require(grDevices)
comparison with other palettes
n = 101
cols = cubeHelix(n)
heat = heat.colors(n)
rain = rainbow(n)
terr = terrain.colors(n)

plot.new()
plot.window(xlim=c(-0.5,1), ylim=c(0,4))
axis(side=1, at=c(0,1))
axis(side=2, at=1:4-0.5, labels=1:4, pos=0)
for (i in 1:n) {

rect((i-1)/n,3,(i+0.1)/n,3.9, col=cols[i], lwd=0)
rect((i-1)/n,2,(i+0.1)/n,2.9, col=heat[i], lwd=0)
rect((i-1)/n,1,(i+0.1)/n,1.9, col=rain[i], lwd=0)
rect((i-1)/n,0,(i+0.1)/n,0.9, col=terr[i], lwd=0)

}
legend(-0.6,4,legend=c("4. cube helix", "3. heat", "2. rainbow", "1. terrain"), box.lwd=0)

End(Not run)

designMatrix Orthogonal Design Matrix

Description

Produces a matrix whose rows correspond to an orthogonal binary design matrix.

Usage

designMatrix(n)

Arguments

n integer containing the number of elements in the set.

Value

An integer matrix of dimension 2^n by 2^n containing 1 and -1.

Dirichlet 11

Note

The output matrix has orthogonal columns and is symmetric, so (up to a constant) is its own inverse.
Operations with this matrix can be performed more efficiently using the fast Hadamard transform.

Author(s)

Robin Evans

See Also

combinations, subsetMatrix.

Examples

designMatrix(3)

Dirichlet The Dirichlet Distribution

Description

Density function and random generation for Dirichlet distribution with parameter vector alpha.

Usage

ddirichlet(x, alpha, log = FALSE, tol = 1e-10)
rdirichlet(n, alpha)

Arguments

x vector (or matrix) of points in sample space.
alpha vector of Dirichlet hyper parameters.
log logical; if TRUE, natural logarithm of density is returned.
tol tolerance of vectors not summing to 1 and negative values.
n number of random variables to be generated.

Details

If x is a matrix, each row is taken to be a different point whose density is to be evaluated. If the
number of columns in (or length of, in the alpha, the vector sum to 1.

The k-dimensional Dirichlet distribution has density

Γ (
∑

i αi)∏
i Γ(αi)

k∏
i=1

xαi−1
i

assuming that xi > 0 and
∑

i xi = 1, and zero otherwise.

If the sum of row entries in x differs from 1 by more than tol, is assumed to be

12 expit

Value

rdirichlet returns a matrix, each row of which is an independent draw alpha.

ddirichlet returns a vector, each entry being the density of the corresponding row of x. If x is a
vector, then the output will have length 1.

Author(s)

Robin Evans

References

https://en.wikipedia.org/wiki/Dirichlet_distribution

Examples

x = rdirichlet(10, c(1,2,3))
x

Find densities at random points.
ddirichlet(x, c(1,2,3))
Last column to be inferred.
ddirichlet(x[,c(1,2)], c(1,2,3))
ddirichlet(x, matrix(c(1,2,3), 10, 3, byrow=TRUE))

expit Expit and Logit.

Description

Functions to take the expit and logit of numerical vectors.

Usage

expit(x)

logit(x)

Arguments

x vector of real numbers; for logit to return a sensible value these should be
between 0 and 1.

https://en.wikipedia.org/wiki/Dirichlet_distribution

fastHadamard 13

Details

logit implements the usual logit function, which is

logit(x) = log
x

1− x
,

and expit its inverse:

expit(x) =
ex

1 + ex
.

It is assumed that logit(0) = -Inf and logit(1) = Inf, and correspondingly for expit.

Value

A real vector corresponding to the expits or logits of x

Functions

• logit(): logit function

Warning

Choosing very large (positive or negative) values to apply to expit may result in inaccurate inver-
sion (see example below).

Author(s)

Robin Evans

Examples

x = c(5, -2, 0.1)
y = expit(x)
logit(y)

Beware large values!
logit(expit(100))

fastHadamard Compute fast Hadamard-transform of vector

Description

Passes vector through Hadamard orthogonal design matrix. Also known as the Fast Walsh-Hadamard
transform.

Usage

fastHadamard(x, pad = FALSE)

14 fastMobius

Arguments

x vector of values to be transformed

pad optional logical asking whether vector not of length 2k should be padded with
zeroes

Details

This is equivalent to multiplying by designMatrix(log2(length(x))) but should run much faster

Value

A vector of the same length as x

Author(s)

Robin Evans

See Also

designMatrix, subsetMatrix.

Examples

fastHadamard(1:8)
fastHadamard(1:5, pad=TRUE)

fastMobius Fast Moebius and inverse Moebius transforms

Description

Uses the fast method of Kennes and Smets (1990) to obtain Moebius and inverse Moebius trans-
forms.

Usage

fastMobius(x, pad = FALSE)

invMobius(x, pad = FALSE)

Arguments

x vector to transform

pad logical, should vector not of length 2^k be padded with zeroes?

fsapply 15

Details

These are respectively equivalent to multiplying abs(subsetMatrix(k)) and subsetMatrix(k)
by x, when x has length 2k, but is much faster if k is large.

Functions

• invMobius(): inverse transform

Examples

x <- c(1,0,-1,2,4,3,2,1)
M <- subsetMatrix(3)
M %*% abs(M) %*% x
invMobius(fastMobius(x))

fsapply Fast and loose application of function over list.

Description

Faster highly stripped down version of sapply()

Usage

fsapply(x, FUN)

Arguments

x a vector (atomic or list) or an expression object.

FUN the function to be applied to each element of x. In the case of functions like +,
the function name must be backquoted or quoted.

Details

This is just a wrapper for unlist(lapply(x, FUN)), which will behave as sapply if FUN returns
an atomic vector of length 1 each time.

Speed up over sapply is not dramatic, but can be useful in time critical code.

Value

A vector of results of applying FUN to x.

Warning

Very loose version of sapply which should really only by used if you’re confident about how FUN
is applied to each entry in x.

16 greaterThan

Author(s)

Robin Evans

Examples

x = list(1:1000)
tmp = fsapply(x, sin)

Not run:
x = list()
set.seed(142313)
for (i in 1:1000) x[[i]] = rnorm(100)

system.time(for (i in 1:100) sapply(x, function(x) last(x)))
system.time(for (i in 1:100) fsapply(x, function(x) last(x)))

End(Not run)

greaterThan Comparing numerical values

Description

Just a wrapper for comparing numerical values, for use with quicksort.

Usage

greaterThan(x, y)

Arguments

x A numeric vector.

y A numeric vector.

Details

Just returns -1 if x is less than y, 1 if x is greater, and 0 if they are equal (according to ==). The
vectors wrap as usual if they are of different lengths.

Value

An integer vector.

Author(s)

Robin Evans

inclusionMax 17

See Also

`<` for traditional Boolean operator.

Examples

greaterThan(4,6)

Use in sorting algorithm.
quickSort(c(5,2,9,7,6), f=greaterThan)
order(c(5,2,9,7,6))

inclusionMax Get inclusion maximal subsets from a list

Description

Get inclusion maximal subsets from a list

Usage

inclusionMax(x, right = FALSE)

Arguments

x list containing the subsets

right logical indicating whether right-most entry is always inclusion maximal

Details

Returns the inclusion maximal elements of x. The indicator right may be set to TRUE in order to
indicate that the right-most entry is always an inclusion maximal set over all earlier sets.

Examples

letlist <- list(LETTERS[1:2], LETTERS[2:4], LETTERS[1:3])
inclusionMax(letlist)

18 indexBox

indexBox Get indices of adjacent entries in array

Description

Determines the relative vector positions of entries which are adjacent in an array.

Usage

indexBox(upp, lwr, dim)

Arguments

upp A vector of non-negative integers, giving the distance in the positive direction
from the centre in each co-ordinate.

lwr A vector of non-positive integers, giving the negative distance from the centre.

dim integer vector of array dimensions.

Details

Given a particular cell in an array, which are the entries within (for example) 1 unit in any direction?
This function gives the (relative) value of such indices. See examples.

Indices may be repeated if the range exceeds the size of the array in any dimension.

Value

An integer vector giving relative positions of the indices.

Author(s)

Robin Evans

See Also

arrayInd.

Examples

arr = array(1:144, dim=c(3,4,3,4))
arr[2,2,2,3]
which are entries within 1 unit each each direction of 2,2,2,3?

inds = 89 + indexBox(1,-1,c(3,4,3,4))
inds = inds[inds > 0 & inds <= 144]
arrayInd(inds, c(3,4,3,4))

what about just in second dimension?
inds = 89 + indexBox(c(0,1,0,0),c(0,-1,0,0),c(3,4,3,4))

int2set 19

inds = inds[inds > 0 & inds <= 144]
arrayInd(inds, c(3,4,3,4))

int2set Alternate between sets and integers representing sets of integers via
bits

Description

Alternate between sets and integers representing sets of integers via bits

Usage

int2set(n, index = 1, simplify = FALSE)

set2int(x, index = 1)

Arguments

n integer respresenting a set

index integer to start from

simplify logical: return a single list if n has length 1?

x list of sets

Details

Converts an integer into its binary representation and interprets this as a set of integers. Cannot
handle sets with more than 31 elements.

Value

For int2set a list of sets one for each integer supplied, for set2int a vector of the same length as
the number of sets supplied.

Functions

• set2int(): Convert sets to integers

20 interventionMatrix

interventionMatrix Calculate interventional distributions.

Description

Calculate interventional distributions from a probability table or matrix of multivariate probability
distributions.

Usage

interventionMatrix(x, variables, condition, dim = NULL, incols = FALSE)

interventionTable(x, variables, condition)

Arguments

x An array of probabilities.

variables The margin for the intervention.

condition The dimensions to be conditioned upon.

dim Integer vector containing dimensions of variables. Assumed all binary if not
specified.

incols Logical specifying whether not the distributions are stored as the columns in the
matrix; assumed to be rows by default.

Details

This just divides the joint distribution p(x) by p(v|c), where v is variables and c is condition.

Under certain causal assumptions this is the interventional distribution p(x | do(v)) (i.e. if the direct
causes of v are precisely c.)

intervention.table() is identical to interventionTable().

Value

A numerical array of the same dimension as x.

Functions

• interventionMatrix(): Interventions in matrix of distributions

Author(s)

Robin Evans

References

Pearl, J., Causality, 2nd Edition. Cambridge University Press, 2009.

is.subset 21

See Also

conditionTable, marginTable

Examples

set.seed(413)
matrix of distributions
p = rdirichlet(10, rep(1,16))
interventionMatrix(p, 3, 2)

take one in an array
ap = array(p[1,], rep(2,4))
interventionTable(ap, 3, 2)

is.subset Check subset inclusion

Description

Determines whether one vector contains all the elements of another.

Usage

is.subset(x, y)

x %subof% y

Arguments

x vector.

y vector.

Details

Determines whether or not every element of x is also found in y. Returns TRUE if so, and FALSE if
not.

Value

A logical of length 1.

Functions

• x %subof% y: operator version

Author(s)

Robin Evans

22 is.wholenumber

See Also

setmatch.

Examples

is.subset(1:2, 1:3)
is.subset(1:2, 2:3)
1:2 %subof% 1:3
1:2 %subof% 2:3

is.wholenumber Determine whether number is integral or not.

Description

Checks whether a numeric value is integral, up to machine or other specified prescision.

Usage

is.wholenumber(x, tol = .Machine$double.eps^0.5)

Arguments

x numeric vector to be tested.

tol The desired precision.

Value

A logical vector of the same length as x, containing the results of the test.

Author(s)

Robin Evans

Examples

x = c(0.5, 1, 2L, 1e-20)
is.wholenumber(x)

kronPower 23

kronPower Kronecker power of a matrix or vector

Description

Kronecker power of a matrix or vector

Usage

kronPower(x, n)

Arguments

x matrix or vector

n integer containing power to take

Details

This computes x %x% ... %x% x for n instances of x.

last Last element of a vector or list

Description

Returns the last element of a list or vector.

Usage

last(x)

Arguments

x a list or vector.

Details

Designed to be faster than using tail() or rev(), and cleaner than writing x[length(x)].

Value

An object of the same type as x of length 1 (or empty if x is empty).

Author(s)

Robin Evans

24 marginTable

See Also

tail, rev.

Examples

last(1:10)

marginTable Compute margin of a table faster

Description

Computes the margin of a contingency table given as an array, by summing out over the dimensions
not specified.

Usage

marginTable(x, margin = NULL, order = TRUE)
marginMatrix(x, margin, dim = NULL, incols = FALSE, order = FALSE)

Arguments

x a numeric array

margin integer vector giving margin to be calculated (1 for rows, etc.)

order logical - should indices of output be ordered as in the vector margin? Defaults
to TRUE for marginTable, FALSE for marginMatrix.

dim Integer vector containing dimensions of variables. Assumed all binary if not
specified.

incols Logical specifying whether not the distributions are stored as the columns in the
matrix; assumed to be rows by default.

Details

With order = TRUE this is the same as the base function margin.table(), but faster.

With order = FALSE the function is even faster, but the indices in the margin are returned in their
original order, regardless of the way they are specified in margin.

propTable() returns a renormalized contingency table whose entries sum to 1. It is equivalent to
prop.table(), but faster.

Value

The relevant marginal table. The class of x is copied to the output table, except in the summation
case.

match_rows 25

Note

Original functions are margin.table and prop.table.

Examples

m <- matrix(1:4, 2)
marginTable(m, 1)
marginTable(m, 2)

propTable(m, 2)

3-way example
m <- array(1:8, rep(2,3))
marginTable(m, c(2,3))
marginTable(m, c(3,2))
marginTable(m, c(3,2), order=FALSE)

#' set.seed(2314)
set of 10 2x2x2 probability distributions
x = rdirichlet(10, rep(1,8))

marginMatrix(x, c(1,3))
marginMatrix(t(x), c(1,3), incols=TRUE)

match_rows Match rows in a matrix with duplicates to set of unique values

Description

Match rows in a matrix with duplicates to set of unique values

Usage

match_rows(x, y, nomatch = NA_integer_)

Arguments

x matrix with unique rows

y matrix to be matched

nomatch value to insert when there is no match

26 patternRepeat

patternRepeat Complex repetitions

Description

Recreate patterns for collapsed arrays

Usage

patternRepeat(x, which, n, careful = TRUE, keep.order = FALSE)

patternRepeat0(which, n, careful = TRUE, keep.order = FALSE)

Arguments

x A vector to be repeated.

which Which indices of the implicit array are given in x.

n Dimensions of implicit array.

careful logical indicating whether to check vailidty of arguments, but therefore slow
things down.

keep.order logical indicating whether to respect the ordering of the entries in the vector
which, in which case data are permuted before replication. In other words, does
x change fastest in which[1], or in the minimal entry for which?

Details

These functions allow for the construction of complex repeating patterns corresponding to those
obtained by unwrapping arrays. Consider an array with dimensions n; then for each value of the
dimensions in which, this function returns a vector which places the corresponding entry of x into
every place which would match this pattern when the full array is unwrapped.

For example, if a full 4-way array has dimensions 2*2*2*2 and we consider the margin of variables
2 and 4, then the function returns the pattern c(1,1,2,2,1,1,2,2,3,3,4,4,3,3,4,4). The entries 1,2,3,4
correspond to the patterns (0,0), (1,0), (0,1) and (1,1) for the 2nd and 4th indices.

In patternRepeat() the argument x is repeated according to the pattern, while patternRepeat0()
just returns the indexing pattern. So patternRepeat(x,which,n) is effectively equivalent to
x[patternRepeat0(which,n)].

The length of x must be equal to prod(n[which]).

Value

Both return a vector of length prod(n); patternRepeat() one containing suitably repeated and or-
dered elements of x, for patternRepeat0() it is always the integers from 1 up to prod(n[which]).

Functions

• patternRepeat0(): Stripped down version that just gives indices

powerSet 27

Author(s)

Robin Evans

See Also

rep

Examples

patternRepeat(1:4, c(1,2), c(2,2,2))
c(array(1:4, c(2,2,2)))

patternRepeat0(c(1,3), c(2,2,2))
patternRepeat0(c(2,3), c(2,2,2))

patternRepeat0(c(3,1), c(2,2,2))
patternRepeat0(c(3,1), c(2,2,2), keep.order=TRUE)

patternRepeat(letters[1:4], c(1,3), c(2,2,2))

powerSet Power Set

Description

Produces the power set of a vector.

Usage

powerSet(x, m, rev = FALSE)

powerSetCond(x, y, m, rev = FALSE, sort = FALSE)

Arguments

x vector of elements (the set).

m maximum cardinality of subsets

rev logical indicating whether to reverse the order of subsets.

y set to condition on

sort logical: should sets be sorted?

Details

Creates a list containing every subset of the elements of the vector x.

powerSet returns subsets up to size m (if this is specified). powerSetCond includes some non-empty
subset of x in every set.

28 printPercentage

Value

A list of vectors of the same type as x.

With rev = FALSE (the default) the list is ordered such that all subsets containing the last element of
x come after those which do not, and so on.

Functions

• powerSetCond(): Add sets that can’t be empty

Author(s)

Robin Evans

See Also

powerSetMat.

Examples

powerSet(1:3)
powerSet(letters[3:5], rev=TRUE)
powerSet(1:5, m=2)

powerSetCond(2:3, y=1)

printPercentage Print Percentage of Activity Completed to stdout

Description

Prints percentage (or alternatively just a count) of loop or similar process which has been completed
to the standard output.

Usage

printPercentage(i, n, dp = 0, first = 1, last = n, prev = i - 1)

Arguments

i the number of iterations completed.

n total number of iterations.

dp number of decimal places to display.

first number of the first iteration for which this percentage was displayed

last number of the final iteration for which this percentage will be displayed

prev number of the previous iteration for which this percentage was displayed

quickSort 29

Details

printPercentage will use cat to print the proportion of loops which have been completed (i.e.
i/n) to the standard output. In doing so it will erase the previous such percentage, except when i =
first. A new line is added when i = last, assuming that the loop is finished.

Value

NULL

Warning

This will fail to work nicely if other information is printed to the standard output

Author(s)

Robin Evans

Examples

x = numeric(100)

for (i in 1:100) {
x[i] = mean(rnorm(1e5))
printPercentage(i,100)

}

i = 0
repeat {

i = i+1
if (runif(1) > 0.99) {
break

}
printCount(i)

}
print("\n")

quickSort Quicksort for Partial Orderings

Description

Implements the quicksort algorithm for partial orderings based on pairwise comparisons.

Usage

quickSort(x, f = greaterThan, ..., random = TRUE)

30 quickSort

Arguments

x A list or vector of items to be sorted.

f A function on two arguments for comparing elements of x. Returns -1 if the
first argument is less than the second, 1 for the reverse, and 0 if they are equal
or incomparable.

... other arguments to f

random logical - should a random pivot be chosen? (this is recommended) Otherwise
middle element is used.

Details

Implements the usual quicksort algorithm, but may return the same positions for items which are
incomparable (or equal). Does not test the validity of f as a partial order.

If x is a numeric vector with distinct entries, this behaves just like rank.

Value

Returns an integer vector giving each element’s position in the order (minimal element(s) is 1, etc).

Warning

Output may not be consistent for certain partial orderings (using random pivot), see example below.
All results will be consistent with a total ordering which is itselft consistent with the true partial
ordering.

f is not checked to see that it returns a legitimate partial order, so results may be meaningless if it
is not.

Author(s)

Robin Evans

References

https://en.wikipedia.org/wiki/Quicksort.

See Also

order.

Examples

set.seed(1)
quickSort(powerSet(1:3), f=subsetOrder)
quickSort(powerSet(1:3), f=subsetOrder)
slightly different answers, but both correposnding
to a legitimate total ordering.

https://en.wikipedia.org/wiki/Quicksort

rowMins 31

rowMins Row-wise minima and maxima

Description

Row-wise minima and maxima

Usage

rowMins(x)
rowMaxs(x)

Arguments

x a numeric (or logical) matrix or data frame

Details

The function coerces x to be a data frame and then uses pmin (pmax) on it. This is the same as
apply(x, 1, min) but generally faster if the number of rows is large.

Value

numeric vector of length nrow(x) giving the row-wise minima (or maxima) of x.

rprobdist Generate a joint (or conditional) probability distribution

Description

Wrapper functions to quickly generate discrete joint (or conditional) distributions using Dirichlets

Usage

rprobdist(dim, d, cond, alpha = 1)

Arguments

dim the joint dimension of the probability table

d number of dimensions

cond optionally, vertices to condition upon

alpha Dirichlet hyper parameter, defaults to 1 (flat density).

32 schur

Details

rprobdist gives an array of dimension dim (recycled as necessary to have length d, if this is
supplied) whose entries are probabilities drawn from a Dirichlet distribution whose parameter vector
has entries equal to alpha (appropriately recycled).

Value

an array of appropriate dimensions

Side Effects

Uses as many gamma random variables as cells in the table, so will alter the random seed accord-
ingly.

Author(s)

Robin Evans

Examples

rprobdist(2, 4) # 2x2x2x2 table
rprobdist(c(2,3,2)) # 2x3x2 table

rprobdist(2, 4, alpha=1/16) # using unit information prior

get variables 2 and 4 conditioned upon
rprobdist(2, 4, cond=c(2,4), alpha=1/16)

schur Obtain generalized Schur complement

Description

Obtain generalized Schur complement

Usage

schur(M, x, y, z)

Arguments

M symmetric positive definite matrix

x, y, z indices of M to calculate with (see below)

setmatch 33

Details

Calculates Mxy − MxzM
zzMzy , which (if M is a Gaussian covariance matrix) is the covariance

between x and y after conditioning on z.

y defaults to equal x, and z to be the complement of x ∪ y.

setmatch Set Operations

Description

Series of functions extending existing vector operations to lists of vectors.

Usage

setmatch(x, y, nomatch = NA_integer_)

setsetequal(x, y)

setsetdiff(x, y)

subsetmatch(x, y, nomatch = NA_integer_)

supersetmatch(x, y, nomatch = NA_integer_)

Arguments

x list of vectors.

y list of vectors.

nomatch value to be returned in the case when no match is found. Note that it is coerced
to integer.

Details

‘setmatch‘ checks whether each vector in the list ‘x‘ is also contained in the list ‘y‘, and if so returns
position of the first such vector in ‘y‘. The ordering of the elements of the vector is irrelevant, as
they are considered to be sets.

‘subsetmatch‘ is similar to ‘setmatch‘, except vectors in ‘x‘ are searched to see if they are subsets
of vectors in ‘y‘. Similarly ‘supersetmatch‘ consideres if vectors in ‘x‘ are supersets of vectors in
‘y‘.

‘setsetdiff‘ is a setwise version of ‘setdiff‘, and ‘setsetequal‘ a setwise version of ‘setequal‘.

Value

‘setmatch‘ and ‘subsetmatch‘ return a vector of integers of length the same as the list ‘x‘.

‘setsetdiff‘ returns a sublist ‘x‘.

‘setsetequal‘ returns a logical of length 1.

34 sets_nested

Functions

• setsetequal(): Test for equality of sets

• setsetdiff(): Setdiff for lists

• subsetmatch(): Test for subsets

• supersetmatch(): Test for supersets

Note

These functions are not recursive, in the sense that they cannot be used to test lists of lists. They
also do not reduce to the vector case.

Author(s)

Robin Evans

See Also

match, setequal, setdiff

Examples

x = list(1:2, 1:3)
y = list(1:4, 1:3)
setmatch(x, y)
subsetmatch(x, y)
setsetdiff(x, y)

x = list(1:3, 1:2)
y = list(2:1, c(2,1,3))
setsetequal(x, y)

sets_nested Check list of sets is nested

Description

Check list of sets is nested

Usage

sets_nested(x)

Arguments

x list containing collection of sets

subsetMatrix 35

Value

If the sets are nested it returns an ordering, otherwise ‘NA‘.

subsetMatrix Matrix of Subset Indicators

Description

Produces a matrix whose rows indicate what subsets of a set are included in which other subsets.

Usage

subsetMatrix(n)

Arguments

n integer containing the number of elements in the set.

Details

This function returns a matrix, with each row and column corresponding to a subset of a hypothetical
set of size n, ordered lexographically. The entry in row i, column j corresponds to whether or not
the subset associated with i is a superset of that associated with j.

A 1 or -1 indicates that i is a superset of j, with the sign referring to the number of fewer elements
in j. 0 indicates that i is not a superset of j.

Value

An integer matrix of dimension 2^n by 2^n.

Note

The inverse of the output matrix is just abs(subsetMatrix(n)).

Author(s)

Robin Evans

See Also

combinations, powerSet, designMatrix.

Examples

subsetMatrix(3)

36 subsetOrder

subsetOrder Compare sets for inclusion.

Description

A wrapper for is.subset which returns set inclusions.

Usage

subsetOrder(x, y)

Arguments

x A vector.

y A vector of the same type as x.

Details

If x is a subset of y, returns -1, for the reverse returns 1. If sets are equal or incomparable, it returns
0.

Value

A single integer, 0, -1 or 1.

Author(s)

Robin Evans

See Also

is.subset, inclusionMax.

Examples

subsetOrder(2:4, 1:4)
subsetOrder(2:4, 3:5)

subtable 37

subtable Subset an array

Description

More flexible calls of [on an array.

Usage

subtable(x, variables, levels, drop = TRUE)

subarray(x, levels, drop = TRUE)

subtable(x, variables, levels) <- value

subarray(x, levels) <- value

Arguments

x An array.

variables An integer vector containing the dimensions of x to subset.

levels A list or vector containing values to retain.

drop Logical indicating whether dimensions with only 1 retained should be dropped.
Defaults to TRUE.

value Value to assign to entries in table.

Details

Essentially just allows more flexible calls of [on an array.

subarray requires the values for each dimension should be specified, so for a 2 × 2 × 2 array x,
subarray(x, list(1,2,1:2)) is just x[1,2,1:2].

subtable allows unspecified dimensions to be retained automatically. Thus, for example subtable(x,
c(2,3), list(1, 1:2)) is x[,1,1:2].

Value

Returns an array of dimension sapply(value, length) if drop=TRUE, otherwise specified dimen-
sions of size 1 are dropped. Dimensions which are unspecified in subtable are never dropped.

Functions

• subarray(): Flexible subsetting

• subtable(x, variables, levels) <- value: Assignment in a table

• subarray(x, levels) <- value: Assignment in an array

38 subtable

Author(s)

Mathias Drton, Robin Evans

See Also

Extract

Examples

x = array(1:8, rep(2,3))
subarray(x, c(2,1,2)) == x[2,1,2]

x[2,1:2,2,drop=FALSE]
subarray(x, list(2,1:2,2), drop=FALSE)

subtable(x, c(2,3), list(1, 1:2))

Index

∗ IO
printPercentage, 28

∗ arith
combinations, 5
designMatrix, 10
expit, 12
fastHadamard, 13
greaterThan, 16
interventionMatrix, 20
is.subset, 21
is.wholenumber, 22
powerSet, 27
quickSort, 29
setmatch, 33
subsetMatrix, 35
subsetOrder, 36

∗ array
conditionMatrix, 6
indexBox, 18
marginTable, 24
patternRepeat, 26
subtable, 37

∗ color
cubeHelix, 8

∗ distribution
Dirichlet, 11
rprobdist, 31

∗ iteration
printPercentage, 28

∗ list
fsapply, 15

∗ manip
last, 23

∗ optimize
armijo, 3
quickSort, 29

∗ print
printPercentage, 28

%subof% (is.subset), 21

and0, 2
armijo, 3
arrayInd, 18

coarseLine (armijo), 3
combinations, 5, 11, 35
condition.table (conditionMatrix), 6
condition.table2 (conditionMatrix), 6
conditionMatrix, 6
conditionTable, 21
conditionTable (conditionMatrix), 6
conditionTable2 (conditionMatrix), 6
cubeHelix, 8

ddirichlet (Dirichlet), 11
designMatrix, 10, 14, 35
Dirichlet, 11

expit, 12
Extract, 38

fastHadamard, 13
fastMobius, 14
fsapply, 15

greaterThan, 16

inclusionMax, 17, 36
indexBox, 18
int2set, 19
intervention.table

(interventionMatrix), 20
interventionMatrix, 20
interventionTable, 8
interventionTable (interventionMatrix),

20
invMobius (fastMobius), 14
is.subset, 21, 36
is.wholenumber, 22

kronPower, 23

39

40 INDEX

last, 23
logit (expit), 12

margin.table, 8, 25
marginMatrix (marginTable), 24
marginTable, 8, 21, 24
match, 34
match_rows, 25

or0 (and0), 2
order, 30

patternRepeat, 26
patternRepeat0 (patternRepeat), 26
powerSet, 27, 35
powerSetCond (powerSet), 27
powerSetMat, 28
powerSetMat (combinations), 5
printCount (printPercentage), 28
printPercentage, 28
prop.table, 25
propTable (marginTable), 24

quickSort, 29

rainbow, 9
rank, 30
rdirichlet (Dirichlet), 11
rep, 27
rev, 24
rowMaxs (rowMins), 31
rowMins, 31
rprobdist, 31

schur, 32
set2int (int2set), 19
setdiff, 34
setequal, 34
setmatch, 22, 33
sets_nested, 34
setsetdiff (setmatch), 33
setsetequal (setmatch), 33
subarray (subtable), 37
subarray<- (subtable), 37
subsetmatch (setmatch), 33
subsetMatrix, 11, 14, 35
subsetOrder, 36
subtable, 37
subtable<- (subtable), 37
supersetmatch (setmatch), 33

tail, 24

	and0
	armijo
	combinations
	conditionMatrix
	cubeHelix
	designMatrix
	Dirichlet
	expit
	fastHadamard
	fastMobius
	fsapply
	greaterThan
	inclusionMax
	indexBox
	int2set
	interventionMatrix
	is.subset
	is.wholenumber
	kronPower
	last
	marginTable
	match_rows
	patternRepeat
	powerSet
	printPercentage
	quickSort
	rowMins
	rprobdist
	schur
	setmatch
	sets_nested
	subsetMatrix
	subsetOrder
	subtable
	Index

